
LiftIgniter
Integration Guide:

Javascript

LiftIgniter • 2017

WHO: Our beacon tracks who a person
is, and tells us what they’re looking at

WHAT: Our JS SDK is a pre-defined set
of instructions for what is going to
happen on the page

HOW: A Mustache.JS template defines
how the recommendations are displayed

WHERE: A particular <div> on the page
where the recommendations will be
displayed

The 5 Second
Version

Overview

Track Everything
● Inventory
● Users
● Activity
● Single Page Applications*

Display Recommendations
● Widgets

● A|B Testing

Post-Implementation

● Reporting

● Troubleshooting

FAQ

Inventory

Track Everything

Inventory

What is Inventory?

● Any item that will be
displayed as a
recommendation

● Articles, videos, song
tracks, ads, content
snippets…

How to track:

1. Add our JS beacon to all site

pages

2. When a user visits a page, the

beacon will automatically

scrape the page for metadata

3. If successful, you will see

_inventory.gif in the Network

log

Details: https://liftigniter.readme.io/docs/what-is-inventory

https://liftigniter.readme.io/docs/what-is-inventory

Metadata

What metadata is
scraped?

● Custom LiftIgniter JSON

<script id="liftigniter-metadata"
type="application/json">
{ "tags" : ["apple", "nutrition"]}
</script>

● OpenGraph tags

<meta property="og:title" content="sample-title"/>

Options

● Hide pages

● Parse data from the DOM

● Include timestamp fields

● Rules and exceptions

● Use an ID to identify unique

pages instead of a URL (contact

Support)

https://liftigniter.readme.io/docs/editing-fieldshiding-item#3-hiding-item
https://liftigniter.readme.io/docs/configuring-what-to-scrape
https://liftigniter.readme.io/docs/defining-your-inventory#fields-with-timestamps
https://liftigniter.readme.io/docs/examples-and-exceptions
mailto:support@liftigniter.com
mailto:support@liftigniter.com

Considerations

Inventory Sync
The Javascript must fire on a page at least once for it to be added to
the Inventory. As a result, items may not be added as soon as they are
published.

Item Expiration
By default, an item added via the JS beacon will expire 30 days from
when it was last seen.

https://liftigniter.readme.io/docs/deleted-items

Users

Track Everything

Users

What are Users?

● Any unique visitor to the
site

How to track:

1. Add our JS beacon to all site pages

2. When a user visits, the beacon will
automatically set a first-party cookie
to track activity

3. As the user moves through the site,
their activity allows us to build up a
profile of their tastes and
preferences

https://liftigniter.readme.io/docs/cookies-and-local-storage

Considerations
Set Custom UserID
You can set the userID so that we associate their behavior to a known
user across multiple devices

Demographic Data
LiftIgniter does NOT require PII or demographic data of any kind.

Since the strongest signals for our algorithms are behavior based,
other user data is generally unnecessary. If you have explicit user data
that you think might help inform our recommendations, you can
include it via the /user API endpoint or as context information in an
Activity.

https://liftigniter.readme.io/docs/psetuserid
https://liftigniter.readme.io/docs/user
https://liftigniter.readme.io/docs/psend

Activity

Track Everything

Activity

What Events are
tracked?

● Pageview + Heartbeat

● Widget Events

○ widget_shown

○ widget_visible

○ widget_click

For complete results and CTR comparison, it is
critical that all widget events are tracked.

How to track:

1. Pageview and Heartbeat events are
tracked automatically by the beacon

2. Widget events are tracked by calling
the $p(“track”) function in the

callback of $p(“register”)

3. If successful, you will see _activity.gif
in the Network log for each
pageview, heartbeat, and each
widget registered

https://liftigniter.readme.io/docs/pageview-and-heartbeat-events
https://liftigniter.readme.io/docs/widget-events
https://liftigniter.readme.io/v1.18/docs/tracking-widgets#1-tracking-widgets
https://liftigniter.readme.io/docs/ptrack
https://liftigniter.readme.io/docs/pregister
https://liftigniter.readme.io/docs/multiple-widgets
https://liftigniter.readme.io/docs/multiple-widgets

Considerations

Other Events
We support several standard event types, including conversion and
engagement. These can be triggered at any time using $p(“send”)

Multiple Events
You can send multiple events in a single call using $p("sendRobust").
This queues the event in a buffer, and sends it on the user's new
pageview.

https://liftigniter.readme.io/docs/activity#event-types
https://liftigniter.readme.io/docs/psend

Single Page Applications

Track Everything

Single Page Applications

Tracking Pageviews
If you have a website that consists of a single page, and content is
loaded using the pushState API of HTML5 or a simple hash routing,
we provide a setting to track the transition.

https://liftigniter.readme.io/docs/push-state-based-single-page-application

Complex SPAs

Not using PushState or hash routing?
These types of single page sites will want to leverage
$p("setContext") to tell LI what the user is currently viewing, and
$p("resetPageview") to tells us when a user transitions to a new
“page”.

https://liftigniter.readme.io/docs/psetcontext
https://liftigniter.readme.io/docs/presetpageview

Widgets

Display Recommendations

Widget Setup

1. Create Widget div

2. Create Mustache.js Template

3. Execute widget rendering and
tracking functions

Create Widget Div

<div id="li-recommendation-widget"></div>

Notes
● The div ID and the widget name do not have to be identical, but it can help future

troubleshooting if they are consistent.
● Each widget on the page should have a separate ID

Create Mustache Template
<script type="application/mustache"
 id="li-recommendation-template">
 {{#items}}
 <div class='recommended_item'>

 <img src="{{thumbnail}}" width="150"
height="150" />
 {{title}}

 </div>
 {{/items}}
</script>

Notes
● The parameter names in the template (e.g. “thumbnail”, “title”) must match the

parameter name in your inventory metadata

● You can request and populate any field present in your metadata, including arrays

Mustache.js allows

you to create

“logic-less”

templates, replacing

sections of HTML

with {{tags}} to be

filled in later

Tutorial: HTML

Templates with

Mustache.js

https://liftigniter.readme.io/docs/psetrequestfields-field_array
https://liftigniter.readme.io/docs/psetarrayrequestfields
http://mustache.github.io/
http://coenraets.org/blog/2011/12/tutorial-html-templates-with-mustache-js/
http://coenraets.org/blog/2011/12/tutorial-html-templates-with-mustache-js/
http://coenraets.org/blog/2011/12/tutorial-html-templates-with-mustache-js/

Execute render and track functions
// Callback renders and injects results into the widget div according to the Mustache template.
$p('register ', {
 max: 5, // Number of items you want to show
 widget: ' default-widget ',
 callback: function(resp) {
 // Query selector should match widget div ID
 var el = document.querySelector('# li-recommendation-widget ');
 // Template should match Mustache Template ID
 var template = document.querySelector(' #li-recommendation-template ').innerHTML;
 // Render the inner HTML of the widget div using the Mustache template and the items in the
response;
 el.innerHTML = $p('render ', template, resp);

 $p('track', {
 // Widget div name and recommendation template name
 elements: document.querySelectorAll(' #li-recommendation-widget > div.recommended_item '),
 name: ' default-widget ',
 // Match widget name
 source: 'LI',
 // Source "LI" indicates recommendations are provided by LiftIgniter
 });
 }
 });

// Executes the registered call.
$p('fetch') ;

The tracking beacon

calls our full JS SDK

asynchronously

This initializes the SDK with

your JS key, along with any

custom configuration settings

“register” tells us which widgets are

on the page, how many items to

return for each one, and other

options

Call fetch only once

to get items for all
registered widgets

Beacon

Executed in callback of $p("register").

“render” fills out the widget div template with

the items returned. “track” attaches an event

listener and tags on the URLs in the widget.

$p("init") $p("register") $p("track")$p(“fetch”) $p("render")

Order of Execution

https://liftigniter.readme.io/docs/sdk-overview
https://liftigniter.readme.io/docs/pinit
https://liftigniter.readme.io/docs/pregister
https://liftigniter.readme.io/docs/multiple-widgets
https://liftigniter.readme.io/docs/multiple-widgets
https://liftigniter.readme.io/docs/prender
https://liftigniter.readme.io/docs/ptrack

A|B Testing

1. Splitting Users

2. Implementing Test

3. Verifying Results

Splitting Users

Use LI Hash:

1. Call $p(“userHash”) to create a hash
of the user cookie

2. Use $p(“abTestSlice”) to take the
hash modulo 100. This creates 100

bins (0-99) and assigns the user to
one of those bins.

3. You can then set which bins should
be shown the LI slice of the test, and
which should be shown the base

Use Your Own:

● If you are using some other method for
A|B testing, just let us know!

● Some tools, like Optimizely, require our
JS beacon to be called from within their
own scope, causing conflicts with the
globally applied tracking beacon. This
can be resolved by wrapping the beacon
script with:

if (typeof $igniter_var === ‘undefined’) {
<tracking beacon here> }

mailto:support@liftigniter.com

Implementing Test

Overwrite Existing

● Copy the HTML of the existing
recommendation area to create your
mustache template to ensure the LI
recommendations look the same as the
existing

Add New Widget

● Construct your template according to
the design you want

● Check out some of our tips on design,
number and placement of
recommendations and how they affect
CTR

Detailed instructions and code examples are available in our documentation!

https://liftigniter.readme.io/v1.18/docs/click-through-rate-ctr
https://liftigniter.readme.io/v1.18/docs/click-through-rate-ctr
https://liftigniter.readme.io/docs/ab-testing#3-liftigniter-vs-your-recommendation-or-nothing

Reporting & Troubleshooting

Post-Implementation

Reporting - Daily Analytics

LiftIgniter Lab

● If an A|B test is running, we’ll
automatically calculate the lift
% over the baseline.

● Each day, we calculate daily and
session-level data for a wide
range of metrics to display in
the Analytics page

https://lab.liftigniter.com
https://liftigniter.readme.io/docs/analytics-panel
https://lab.liftigniter.com/analytics

Reporting - Realtime

Happening Now

● Raw counts are available in the
Realtime page so you can see
exactly what events have been
reported in the last few
minutes.

● You can also see a list of which
items are appearing or being
clicked most frequently in the
“Top Clicked” and “Top Viewed”
charts

https://liftigniter.readme.io/docs/realtime-panel

Troubleshooting - Inventory

Health Check

● Check the last 100 URLs
scraped from your site

● See the number of unique keys
(metadata fields) across your
entire inventory, and the
percentage of URLs that have
those keys

● See any recent errors we
encountered when scraping
your pages, such as JSON
malformationGet Started > Inventory

https://lab.liftigniter.com/onboarding/inventory

Troubleshooting - Tracking

Verify Events

● Check counts for last 24 hours

● Counts update each time
browser page refreshes

Get Started > Render

https://lab.liftigniter.com/onboarding/track

Troubleshooting - A|B Testing

Check A|B Splits

● Calculates the actual difference
in events for base and
LiftIgniter slices

● Verify against your test
handler’s settings to identify
any discrepancies.

Get Started > Render

https://lab.liftigniter.com/onboarding/abtest

Troubleshooting - Dev Tools

Network

The following events should fire:
● Javascript snippet loads our SDK asynchronously
● Pageview
● Model = request for recommendations
● widget_response = event tracking that

recommendations were returned to the client
● Widget_shown = recs loaded on page
● Widget_click = recs scrolled into viewport
● Stuck_10s = user was on page for at least 10 seconds
● Inventory.gif = the item metadata we collect for the

current URL

Use “petametrics”
to filter logs

Troubleshooting - Console

$p(“runDiagnostics”)

The runDiagnostics function can be run in the console to print
out diagnostics for the JavaScipt integration. The output
includes messages marked:

● [ERROR] - action required, may prevent
recommendations from displaying or being tracked

● [WARNING] - attention required, may seriously hamper
recommendation quality

● [INFO] - deserves consideration, performance could be
improved.

● [DEBUG] - safe to ignore, usually used by LI support
for deeper integration quality checks

FAQ

What’s the difference between widget_shown
and widget_visible? Why use both?

widget_shown

● This is sent when the widget is loaded
anywhere on the page. However, it may
not be seen by the user, especially if
they are on mobile or the design means
it is below the fold (e.g. at the bottom of
an article)

widget_visible

● This is sent when the widget is scrolled
into the user’s viewport. As a result, we
know the user probably saw the
recommendations

It’s important to send both so that we can calculate the visibility of an item (how often a
widget is seen by the user out of all the times it was loaded - are they scrolling all the way
to the bottom of the article and seeing the widget, or no?).

Knowing the visibility lets us get a more accurate reading of the CTR by calculating the
visible CTR - the rate at which users click when they do see the recommendations in the
widget.

https://liftigniter.readme.io/docs/widget-shown
https://liftigniter.readme.io/docs/widget-shown
https://liftigniter.readme.io/docs/widget-visible
https://liftigniter.readme.io/docs/widget-visible
https://liftigniter.readme.io/docs/visible-click-through-rate-vctr

How do I prevent some items from being shown
as recommendations?

Lots of options!

● By default items expire from the inventory 30 days after it was last
seen by our beacon (using the API allows you to set your own TTL
value)

● NoShow: Add to inventory, but never show it (Recommended)

● NoIndex: Don’t add to inventory at all

● Max Age: Don’t show items older than X time

● Exclude a specific list of items for a particular query

● Boost new items, then gradually decay over time

https://liftigniter.readme.io/docs/inventory
https://liftigniter.readme.io/docs/editing-fieldshiding-item#3-hiding-item
https://liftigniter.readme.io/docs/examples-and-exceptions#forbid-us-from-indexing-some-items
https://liftigniter.readme.io/docs/set-max-age-for-recommended-items
https://liftigniter.readme.io/docs/exclude-items-from-recommendations
https://liftigniter.readme.io/docs/set-time-decay

How do I boost specific items?

To boost or not to boost...

In general, the algorithm will give preference to the right content at the right time all on its own. It’s
what we do best! However, we know that sometimes certain content needs a boost in order to
meet impression quotas or other obligations.

● Boost new items, then decay over time

● Default flat boost - multiple items tagged with this will all have the same amount of boost
applied

● Custom rules - if you have a particular use case, don’t hesitate to reach out to Support!
We’ll be happy to help implement rules specifically for your content to give automatic
preference to sponsored stories, specific categories or tags, or other indicators. Just let us
know how we can help!

https://liftigniter.readme.io/docs/set-time-decay
https://liftigniter.readme.io/docs/boost-individual-items
mailto:support@liftigniter.com

Check out our
Documentation!

https://liftigniter.readme.io/docs
https://liftigniter.readme.io/docs

